PARA QUEM TEM O
POLÍGRAFO DO CURSO SÃO AS QUESTÕES 28 À 37
01.(MACK/SP) Um
móvel, partindo do repouso, executa movimento retilíneo cuja aceleração escalar
varia com o tempo conforme o diagrama abaixo
Pode-se afirmar que, ao fim de 4 s, o espaço percorrido é
a) 45 m
b) 30 m
c)
50 m
d) 100 m
e)
180 m
RESOLUÇÃO:
Para resolver está questão devemos descobrir a velocidade
final, após os 4 segundos e aplicar nas fórmulas ou montar o gráfico de velocidade,
para então calcular a distância percorrida pela área do gráfico.
Se fossemos resolver pela fórmula, devemos dividir o
movimento em MRUV que é o inicio e MRU que é o final, pois até os 3 s ele
apresenta aceleração, e depois ele não apresenta mais aceleração, logo é MRU.
Vamos montar a primeira parte que é MRUV
Vi = 0
a = 4 m/s2
t = 3 s
Agora é só aplicar na fórmula de distância
d = di
+ vi . t + a . t2 di = zero, então some da fórmula
2
d = 0 . 3 + 4
. 32
2
d = 2 . 9
d = 18 m
Agora devemos analisar a segunda
parte que é MRU, só que devemos saber qual é a velocidade após os 3 segundos.
V = Vi + a . t
V = 0 + 4 . 3, 4 é a aceleração no
gráfico e 3 é o tempo que a aceleração atuou.
V = 12 m/s
Agora sim, vamos ao MRU.
d = V . t
d = 12 . 1, o tempo é 1 pois dos 3
segundos até os 4 segundos é 1 segundo.
d = 12 m
Então a soma dos dois é de 18 + 12
= 30 metros.
Mas podemos
calcular a distância percorrida montando um gráfico de velocidade por tempo.
A aceleração
é o quanto a velocidade varia com o tempo, então, se a aceleração é de 4 m/s2,
a velocidade aumenta 4 m/s em cada segundo. Como a aceleração durou 3 segundos,
a velocidade aumentou 12 m/s (3 x 4).
Depois como
não houve mais aceleração, a velocidade se mantém constante em 12 m/s até o
tempo de 4 segundos. Agora vamos ver o gráfico como fica.
Podemos verificar que uma parte do gráfico é inclinado, pois
apresenta aceleração e a parte final é uma reta na horizontal (velocidade
constante) confirmando que não apresenta aceleração.
Agora vamos calcula a área do gráfico para descobrir a
distância percorrida. Reforçando que a área do gráfico representa a distância
percorrida.
R = letra B
02.(UFRGS) Num
movimento retilíneo um aluno obteve os dados da tabela abaixo, para a posição
do móvel x nos tempos t. Para o tempo zero o móvel estava em repouso.
t (s)
|
x(m)
|
0
|
0
|
1
|
1
|
2
|
4
|
3
|
9
|
4
|
16
|
5
|
25
|
Qual o gráfico que melhor representa a velocidade v do móvel em função
do tempo t?
RESOLUÇÃO
Analisando a tabela, podemos
ver que a distância percorrida a cada segundo aumenta, e também que a variação
também aumenta, como vou demonstrar agora.
Com a variação dos números
podemos verificar que o movimento apresenta aceleração, pois se a distância percorrida
em cada segundo aumenta, quer dizer que o móvel está se deslocando mais rápido.
Então o gráfico de
velocidade deve ser com o aumento da velocidade, e sempre gráfico de velocidade
é uma reta, ou na horizontal ou na diagonal.
Neste primeiro caso a
velocidade aumenta, pois a inclinação é positiva (para cima)
Neste segundo caso a
velocidade diminui, pois a inclinação é negativa (para baixo)
Neste terceiro caso a
velocidade é constante, pois o gráfico é na diagonal.
Como no caso da tabela a distância
aumenta cada vez mais, a velocidade também aumenta, sendo o gráfico da letra B
o correto
R: letra B
03.(PUC/RS) Dizer que
um movimento se realiza com uma aceleração escalar constante de 5 m/s2
significa que
a) Em cada segundo o móvel se desloca 5 m .
b) Em cada segundo a velocidade do móvel aumenta de 5 m/s.
c)
Em cada segundo a
aceleração do móvel aumenta de 5 m/s2.
d) Em cada 5 segundos a velocidade aumenta de 1 m/s.
e) A velocidade é constante e igual a 5 m/s.
RESOLUÇÃO:
A aceleração representa o quanto a velocidade varia, neste caso, ela
varia 5 m/s a cada segundo.
R: letra B
04.(Cesgranrio-RJ) Um
fabricante de automóveis anuncia que determinado modelo atinge 80 km/h em 8 segundos (a
partir do repouso). Isso supõe que aceleração escalar média próxima de:
a) 0,1 m/s2.
b) 3 m/s2.
c)
10 m/s2.
d) 23 m/s2.
e) 64 m/s2.
RESOLUÇÃO:
Para resolver este
caso, devemos inicialmente igualar as unidades, pois o tempo está em segundos e
a velocidade está em km/h, o que não fecha, e também a resposta está em m/s2,
logo devemos passar a velocidade para m/s.
Para transformar a
velocidade de km/h para m/s vamos aplicar esta regra abaixo.
Vamos dividir 80
por 3,6 = 22,22 m/s
Agora vamos
aplicar na fórmula da velocidade que apresenta aceleração
V = V0
+ a x t
Como o móvel parte
do repouso
V0 = 0
V = 22,22 m/s
t = 8 s
a = ?
Agora é só aplicar
na fórmula
V = V0
+ a x t
22,22 = 0 + a x 8
22,22 = a
8
a = 2,77 m/s2
, o que é mais próximo de 3
R: letra B
05.(U. Caxias do
Sul-RS) Uma revista automobilística, comparando diferentes carros, afirma que
um deles vai de 0 a 100 km/h em 17,22 s,
percorrendo a distância de 309,0
m . Isso significa que nesse intervalo de tempo o carro:
a) desloca-se com velocidade constante.
b) Tem uma velocidade média de 50 km/h no trecho indicado.
c)
Tem velocidade
média de 14,0 m/s.
d) Tem uma aceleração média de 6,8 km/h/s.
e) Tem uma aceleração média de 5,8 m/s2.
RESOLUÇÃO:
O correto para
resolver está questão seria testar cada resposta para ver se está correta ou
incorreta.
a) Como o automóvel parte do repouso, a sua velocidade não é constante,
então esta é errada.
b) Para verificar a velocidade média em MRUV, devemos utilizar a seguinte
fórmula.
Vm = V + V0
2
Logo, Vm = 100
+ 0 = 50 km/h, está correta!
2
R: letra B
06.(Fuvest-SP) Um
veículo parte do repouso em movimento retilíneo e acelera a 2 m/s2.
Pode-se dizer que sua velocidade e a distância percorrida, após 3 segundos,
valem, respectivamente
a) 6 m/s e 9 m .
b) 6 m/s e 18 m .
c)
12 m/s e 36 m .
d) 2 m/s e 12 m .
e) 3 m/s e 12 m .
RESOLUÇÃO:
Para descobrir a velocidade
final podemos utilizar as fórmulas ou pensar em como a velocidade se comporta
com a aceleração e o tempo.
A aceleração é o quanto a
velocidade muda a cada segundo, então, neste caso, o veículo parte do repouso,
então a sua velocidade inicial é zero, e a sua aceleração é de 2 m/s2, o que faz a velocidade
aumentar 2 m/s a cada segundo, como se passam 3 segundos, a velocidade aumenta
6 m/s (2 para cada segundo, como são 3 = 2 x 3 = 6), passando de zero para 6
m/s.
Para descobrir a distância
podemos utilizar a fórmula clássica de distância.
D = d0 + V0
x t + a x t2 è D = 0 + 0 x 3 + 2 x 32 è D = 9 m
2 2
Outra forma de descobrir a
distância percorrida em MRUV é fazer a velocidade média e plicar em MRU.
Vm = V + V0 è Vm = 6 + 0 è Vm = 3 m/s
2 2
Agora vamos aplicar este
valor e o tempo para descobrir a distância.
Tapamos a distância e o que
sobra é D = V x T
D = 3 x 3 = 9 m (acho mais
fácil)
R: letra A
07.(UF-PI) Um barco,
cuja velocidade em relação à água é de 4,0 m/s, movimenta-se em um rio cuja
correnteza tem velocidade de 3,0 m/s em relação às margens. Ao subir o rio, a
velocidade do barco para um observador na margem do rio tem módulo:
a) 7,0 m/s.
b) 5,0 m/s.
c)
4,0 m/s.
d) 3,0 m/s.
e) 1,0 m/s.
RESOLUÇÃO:
Como assim subir o rio? É
uma forma de falar em se deslocar contra a correnteza, mas é uma expressão
estranha, pois ninguém sobe o rio!
Mas vamos lá, neste caso o
barco e a correnteza do rio tem direções opostas, o que leva a subtrair as
velocidades para descobrir a velocidade do barco em relação a um observador
inercial na margem do rio (um cara parado, olhando o barco, acho que ele não
tinha o que fazer).
Então, 4 – 3 = 1 m/s
R: letra E
INTRODUÇÃO: As questões 07 a 09 estão relacionadas ao
enunciado abaixo.
O tempo de reação tr de um condutor de um
automóvel é definido como o intervalo de tempo decorrido entre o instante em
que o condutor se depara com uma situação de perigo e o instante que ele aciona
os freios.
(Considere dR e dF,
respectivamente, as distâncias percorridas pelo veículo durante o tempo de
reação e de frenagem; e dT, a distância total percorrida. Então, dT
= dR + dF).
Um automóvel trafega com velocidade constante de módulo
v = 54,0 km/h em uma pista horizontal. Em dado instante, o condutor visualiza
uma situação de perigo, e seu tempo de reação a essa situação é de 4/5 s, como
ilustrado na sequência de figuras abaixo.
08.(01-2012)
Considerando-se que a velocidade do automóvel permaneceu inalterada durante o
tempo de reação tR, é correto afirmar que a distância dR
é de
a) 3,0 m.
b) 12,0 m.
c)
43,2 m.
d) 60,0 m.
e) 67,5 m.
RESOLUÇÃO:
Durante o tempo de
resposta o automóvel estava em MRU, logo podemos utilizar a fórmula de Deus vê
tudo.
Agora devemos tapar a
distância e resolver o resto.
D = V x T
O tempo de reação é
de 4/5 de segundo, como indica o texto, e a velocidade é de 54 km/h.
Como a distância está
em m na resposta, a velocidade também deve estar em metros e o tempo em
segundos.
A velocidade está em Km/h, o que devemos
mudar para m/s com a seguinte fórmula.
54 / 3,6 = 15 m/s
Agora sim, vamos aplicar na fórmula.
D = 15 x 4/5 = 12 metros.
R:
letra B
09.(02-2012) Ao reagir à situação de perigo
iminente, o motorista aciona os freios, e a velocidade do automóvel passa a
diminuir gradativamente, com aceleração constante de módulo 7,5 m/s2.
Nessas
condições, é correto afirmar que a distância dF é de
a) 2,0 m.
b) 6,0 m.
c)
15,0 m.
d) 24,0 m.
e) 30,0 m.
RESOLUÇÃO:
Para resolver este
caso devemos analisar qual fórmula usaremos para descobrir a distância.
Como eu marquei na
segunda fórmula, não temos o tempo, então usaremos a primeira fórmula.
O corpo ao final do
movimento irá parar, logo a sua velocidade final será zero, vamos colocar
abaixo todas a informações que obtemos.
V = 0
V0 = 15
m/s
T = ?
A = 7,5 m/s2
D = dúvida
Aplicando na fórmula.
02 = 152
– 2 x 7,5 x d (menos pois está freando)
0 = 225 – 15 d
-225 = - 15 d
-225 / -15 = d
15 m = d
R: letra C
10.(03-2012)
Em comparação com as distâncias dR e dF, já calculadas, e
lembrando que dT = dR + dF, considere as
seguintes afirmações sobre as distâncias percorridas pelo automóvel, agora com
o dobro da velocidade inicial, isto é, 108 km/h.
I –
A distância percorrida pelo automóvel durante o tempo de reação do condutor é
2dR.
II
– A distância percorrida pelo automóvel durante a frenagem é de 2dF.
III
– A distância total percorrida pelo automóvel é de 2dT.
Quais estão
corretas?
a) Apenas I.
b) Apenas II.
c)
Apenas I e II.
d) Apenas I e III.
e) I, II e III.
RESOLUÇÃO:
Primeiro devemos
passar a velocidade de 108 km/h para m/s.
108 / 3,6 = 30
m/s.
Vamos analisar
cada afirmação com os dados obtidos nas duas questões anteriores.
I – Vamos fazer o
mesmo cálculo que fizemos para a distância de reação, só que trocando a
velocidade para 30
D = 30 x 4/5 = 24
metros, o que é o dobro. CORRETA
II – Vamos aplicar
na mesma fórmula que usamos para calcular a distância na frenagem, só que
trocando a velocidade para 30
02 = 302
– 2 x 7,5 x d
0 = 900 – 15 d
- 900 = - 15 d
- 900 / -15 = d
60 metros, o que
não é o dobro da distância de 15 metros descoberto na questão anterior. ERRADA
III – Logo a
distância total não pode ser o dobro,
pois antes foi de 12 + 15 = 27 metros, agora foi de 24 + 60 = 84 metros. ERRADA
R : letra A
Nenhum comentário:
Postar um comentário